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Non-commutative geometry and irreversibility
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Abstract. A kinetics built upon q-calculus, the calculus of discrete dilatations, is shown to describe diffusion
on a hierarchical lattice. The only observable on this ultrametric space is the “quasi-position” whose
eigenvalues are the levels of the hierarchy, corresponding to the volume of phase space available to the
system at any given time. Motion along the lattice of quasi-positions is irreversible.

PACS. 05.20.Dd Kinetic theory – 05.70.Ln Nonequilibrium thermodynamics, irreversible processes

1 Introduction

The study of systems that are symmetric under dilata-
tions rather than translations have been with us for a long
time. The field of critical phenomena has been a breed-
ing ground for useful scaling ideas. Fractal geometry [1]
has provided us with a suitable language to describe sys-
tems with affine symmetries. It has been recently demon-
strated [2] that, although ordinary derivatives of fractal
or multifractal distributions may be nowhere defined, the
finite q-derivative [3] provides a natural extension of the
derivative to systems with discrete dilatation symmetries,
and the q-integral [4] provides the requisite tool for inte-
grating along a discrete path in scale space [5].
An appropriate language in which to describe the ki-

netics and dynamics of motion on such spaces, however,
has not yet been sufficiently elaborated. One may think
that a periodic lattice on the logarithmic scale would play
here the same role as the linear chain does with respect
to motion on a discrete, translationally invariant space.
However, it is easy to see that progress on the logarithmic
lattice is not symmetric with respect to a simultaneous
reflection and time reversal, and corresponds to very dif-
ferent physics. It is the purpose of this paper to explore
this asymmetry and to show that taking a statistical view
point and associating the kinetics of a point on the loga-
rithmic lattice with the motion of a representative point
in phase space, leads naturally to the arrow of time one
encounters in statistical physics [6].
The paper is organized as follows. In the next section,

we will briefly recall the work of Dimakis and Müller-
Hoissen [7] relating the so called q-deformed quantum me-
chanics [8] to quantum mechanics on a discrete lattice and
then make a different, and we claim more natural, choice
for the operators, to describe a different physics. In this
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description, the energy and momentum are no longer ob-
servables, nor are they conserved. Instead, we define a
“quasi-position” operator, and show, in Section 3, that
this tells us the volume in phase space over which the
probability distribution of the representative point of our
system is spread. In Section 4 we discuss connections with
other recent work.

2 A Hamiltonian system on a hierarchical
space

It has been demonstrated by Dimakis and Müller-Hoissen
[7] that q-calculus [3,4] can be obtained from discrete cal-
culus on a lattice by an exponential coordinate transfor-
mation. Under this transformation discrete translations go
over to discrete dilatations. The q-deformed commutation
relations obeyed by the transformed variables and their q-
derivatives lead to q-deformed quantum mechanics [8]. In
this way, q-deformed quantum mechanics has been given
an interpretation in terms of quantum mechanics on a lat-
tice.
Let us recall the definition of the q-derivative [3,7,9,

10]

∂(q)y f(y) ≡
f(qy)− f(y)

(q − 1)y
, (1)

and

∂
(q)

y f(y) ≡
f(q−1y)− f(y)

(q−1 − 1)y
, (2)

where the subscript indicates the variable with respect to
which the derivative is to be taken. It is easy to see that [7]
these operators can be obtained from the discrete partial
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derivatives

∂̃(a)x f(x) ≡
1

a
[f(x+ a)− f(x)] (3)

∂̃
(a)

x f(x) ≡
1

a
[f(x)− f(x− a)] (4)

under the coordinate transformation

y = q
x
q−1 (5)

q = 1 + a. (6)

With x = `a, one has y = q`, since q − 1 = a. Thus,
this coordinate transformation takes the one-dimensional
lattice with lattice spacing a, to another lattice which has
spacing q on the logarithmic scale (Fig. 1a). It is useful
to define discrete translation operators on the lattice in
x-space, in terms of which the difference operator can be
expressed; under the change of variables these go over to

the discrete dilatation operators such that (A
(q)
y f)(y) =

f(qy) and (A
(q)

y f)(y) = f(q−1y), with

A(q)y ≡ 1 + (q − 1)Y∂
(q)
y (7)

and

A
(q)

y ≡ 1− (q − 1)
1

q
Y∂
(q)

y . (8)

If the position operator X is defined as multiplication
by x, we notice that it is self-adjoint, and therefore can be
identified with an observable, while the one sided (3, 4)

difference operators ∂̃
(a)
x and ∂̃

(a)

x are not. On the other
hand, Dimakis and Müller-Hoissen [7] define the momen-
tum and Hamiltonian operators in x-space via self-adjoint
linear combinations of these operators, viz.,

P ≡
1

2i
(∂̃(a)x + ∂̃

(a)

x ) (9)

and

H ≡ −
1

2
(∂̃(a)x ∂̃

(a)

x ) = −
1

2a
(∂̃(a)x − ∂̃

(a)

x ). (10)

The momentum and Hamiltonian thus obtained satisfy
the Heisenberg equations of motion; however, the usual
canonical commutation relation is altered. Explicit calcu-
lation yields

[P,X] = −i(1− a2H). (11)

In terms of the discrete time derivative, ∂̃
(∆t)
t = (T̃ −

1)/(∆t), where T̃ is the time translation operator by the
finite increment ∆t, the Schrödinger equation is written

∂̃
(∆t)
t f(x, t) = Hf(x, t). (12)

This leads to the relation

T̃ = 1− iH∆t. (13)

ln y/ln q

-2 -1 0 1 2

R
-2 R

-1

1

R

R
2

(a)

l = -1

l = 0

l = 1

l = 2

l = -2

(b)

Fig. 1. The hierarchical space on which the quasi-position op-
erator Y is defined. The “quantum number” ` corresponds to
the highest node which the particle has so far surmounted, with
an associated energy barrier of height R`, thereby being delo-
calized over a region of size q`y0. We will define the distance
d between two states such that qdy0 is the smallest interval
which contains both of them. Thus, the quasi-position ` is the
upper bound on the distance d to the origin at any given time.
Note that we allow negative values of d; this is useful since we
have taken each state at level 0 to be itself infinitely divisible,
so that the tree is scale invariant under all dilatations. Tran-
sitions between microstates whose distances to the origin are
d ≤ ` do not affect the “quasi-position” `. The tree shown in
the figure has branching ratio µ = 2.
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Comparing with (11) one sees that if one makes the iden-
tification a2 = i∆t, then the canonical commutation rela-
tion becomes

[P,X] = −iT̃. (14)

Note that this goes to the usual limit as ∆t (or a) → 0.
Going over to the transformed space, with Y straight-

forwardly implying multiplication by y, the following
“q-deformed” commutation relations,

[∂(q)y ,Y]q ≡ ∂
(q)
y Y − qY∂

(q)
y = 1 (15)

and

[∂
(q)

y ,Y]q−1 = 1 (16)

[∂
(q)

y , ∂(q)y ]q = 0, (17)

hold. The transformed momentum and Hamiltonian op-
erators remain Hermitian. However, they satisfy Heisen-
berg’s equations of motion with the ordinary definition of
the commutator and not with the deformed definition. To
be able to give an intepretation of the physics, moreover,
one has to transform back to the linear lattice.
We would now like to propose a different choice for

the momentum operator. Notice that there is a kind of
democracy between the right and left difference operators
(3, 4), which makes it natural for the (self-adjoint) mo-
mentum operator on the discrete lattice to be defined [7]
as in equation (9) but this democracy does not hold be-

tween ∂
(q)
y and ∂

(q)

y which describe processes at different
scales. On the linear chain, exactly one unit is added to
an interval everytime a step is made to the right wherever
one may be on the chain. However, when ` is increased by
unity in y space, the size of the interval which is certain to
include the origin increases by (q−1)q`. We will therefore
deliberately allow the momentum not to be an observable.
This gives us the freedom to associate the momentum op-
erator directly with the q-derivative (1)

Pq = − i ∂
(q)
y . (18)

Now we consider the ordinary commutator of Y and Pq
rather than the q-deformed one as in (15). We find that
the canonical commutation relation becomes

[Pq,Y] = − i A
(q)
y . (19)

To be consistent in our use of the difference opera-
tors, we write the deformed “Schrödinger equation” also
in terms of the Jackson derivative, in this case with re-
spect to time. Clearly, the dilatation factor for time, qt,
need not be equal to q; in fact we may define a “dynamical
exponent” ζ via the relation

qt = q
ζ . (20)

Defining the time dilation operator, T, by

Tf(y, t) ≡ f(y, qt t) (21)

we have ∂
(qt)
t ≡ (T−1)/[(qt−1)t]. The Schrödinger equa-

tion then becomes

i ∂
(qt)
t f(y, t) = Hqf(y, t), (22)

where Hq is our — as yet unspecified — Hamiltonian.
From (22), we have the relation

T = 1− i(qt − 1)tHq, (23)

to be compared with (13). We now need to make a choice
either for Hq, or, equivalently, for T. In making this choice,
we are guided by equation (14), and set

[Pq,Y] = −iT (24)

yielding

T = A(q)y . (25)

This is clearly a crucial step, which makes the motion of
the phase point along the nonlinear chain ballistic, and
in the increasing y direction. In the next section, we will
discuss how this motion can be understood in terms of an
associated process, that of a diffusing particle on an under-
lying hierarchical lattice, and therefore leads to nontrivial
results.
Using (21, 22) one readily has

Hq = i
T− 1

(qt − 1)t
, (26)

or, with (25, 7),

Hq =
i(q − 1)Y∂(q)y
(qt − 1)t

· (27)

The constant prefactor in equation (27) may be written
as the inverse of a “basic number” [10],

[ζ]q ≡
qζ − 1

q − 1
, (28)

where ζ is the dynamical exponent defined in (20). (This
dynamical exponent ζ, which tells us how time scales with
the distance, takes the value of 2 on Euclidean space; we
expect it to be equal to the random walk dimension [11] on
the hierarchical lattice.) With these definitions, the Hamil-
tonian operator becomes

Hq = −
1

[ζ]q

YPq
t
, (29)

which has the right “dimensions” for being an energy.
Note that this “Hamiltonian” is non-Hermitian, as is

our “momentum,” so that the energy is not an observ-
able, neither is it a constant of the motion; Hq depends
explicitly on time. Since [H,Pq] 6= 0, the momentum is not
conserved either.
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The solutions of the “Schrödinger equation” (22) can
be found by making a separation of variables. Taking
f(y, t) = g(y)h(t) and using (29, 18), one has

t∂
(qt)
t h(t)

h(t)
=
1

[ζ]q

Y∂
(q)
y g(y)

g(y)
· (30)

Setting both sides of the equation equal to a constant, C,
gives

t∂
(qt)
t h(t)

h(t)
= C, (31)

and

Y∂
(q)
y g(y)

g(y)
= [ζ]qC. (32)

The solutions to these equations are given in terms of
homogeneous functions, namely power laws, up to multi-
plication by oscillatory functions,

h(t) = Fqt(t)t
ψ , (33)

g(y) = Fq(y)y
χ. (34)

From (20), we find [ζ]q[ψ]qt = [ζ ψ]q. On the other hand,
from (32, 34), we have [χ]q = [ζ]q[ψ]qt , whence, χ = ζψ.
For finiteness as t→∞, χ, ψ < 0.
The oscillatory amplitudes multiplying the power laws

in (33, 34) must satisfy Fr(ru) = Fr(u) so that ∂
(r)
u Fr(u) =

0. Such functions periodic in the logarithm of their argu-
ments can be expressed in terms of the Jackson integral
[4,9] from 0 to ∞

Fr(u) =

∫ ∞u
0u

φ(v)D(r)v (35)

≡

∫ u

0

φ(v)

v1+ω
D(r)v +

∫ ∞
u

φ(v)

v1+ω
D(r)v (36)

= (r − 1)u−ω
∞∑

k=−∞

r−kωφ(rku), (37)

for r > 1, where we have used [2] the notation D
(q)
v for

the q-differential of v; φ(v) is an arbitrary periodic func-
tion, which vanishes at the origin together with its first n0
derivatives, n0 being the smallest integer > ω, and ω > 0.
Notice that since k ranges over all positive and negative
values, r here may be bigger than unity, as we have as-
sumed q to be.
Finally, the solutions of equation (22) can be written

fψ(y, t) = Fq(y)Fqt(t)(y
ζt)ψ. (38)

These solutions are degenerate with respect to the func-
tions φ and the indices ω appearing in the oscillatory am-
plitudes. Notice, however, that when y and t are only al-
lowed to take discrete values such as qm, qnt , with integer
m and n, clearly the functions Fq(y) and Fqt(t) can only
take on constant values.

3 The “quasi-position” operator and
spreading of the probability distribution

With the Hermitian operator Y we will associate a posi-
tion-like observable which we will call the “quasi-position”
[12], the “quantum numbers” ` corresponding to the high-
est level so far attained by the phase point on the y-lattice.
To the motion of the phase point along the chain of quasi-
positions q` (see Fig. 1a), there corresponds an associated
process, that of the diffusive motion of a particle on an
underlying hierarchical lattice as shown in Figure 1b.
To proceed from the `th level of the hierarchy to the

next, we assume the particle has to surmount an energy
barrier of hight R`, hence the hierarchy of characteristic
times, q`t . On this lattice, to each successive quasi-position
indexed by the quantum number ` there corresponds a
geometrical increase in the number of microstates [13,14].
The origin has been arbitrarily chosen at y0. The regions
of extent q` (or phase-space volume µ`, with µ being the
branching ratio) over which the particle is successively
delocalized form a nested hierarchy, i.e., the microstates
already available at the `− 1st level are subsumed by the
microstates that become available at the `th level, with
an increase in the 0-level states of µ`(1 − µ−1). The cru-
cial point to realize is that transitions between microstates
within the same interval of size q` do not change the quan-
tum number `, i.e., the quasi-position. Going from one
level to the next, however, means surmounting one higher
barrier, therefore an increase in the phase space volume
made available. Thus it implies an increase in the entropy
of the system, and we expect this motion to be irreversible,
which it indeed is [6].
It is useful to recall [15] that the quantum mechani-

cal expectation of the transition of a free particle between
two different space points on ordinary space can be as-
sociated with a weighted sum over all possible paths of
a classically diffusing particle between these two points.
The path integral over quasi-positions, however, is trivial
— once the phase point has progressed to some level `, the
paths of the diffusing particle which go back and explore
sites within the phase space volume already broached (at
levels ≤ `) simply do not contribute. Therefore the time
dilation leads deterministically to an increase in `, as can
be seen from equation (25). On the other hand, the prob-
ability distribution for finding the particle at some level
≤ ` at a given time t is not trivial, as will be described
below.
The unnormalized state functions corresponding to the

pure states |`〉 of the quasi-position operator are given,
again up to multiplication by functions doubly periodic in
ln y and ln t with periods ln q and ln qt, by

ε`(y, t) = exp
{
−
1

2

[ (y/y0)ζ
τ`

t
]λ}

(39)

where τ` = R` are the characteristic decay times, and
λ > 0 is arbitrary. For simplicity, we shall choose λ = 1,
but this does not at all affect the subsequent discussion.

By (25), Tε`(y, t) = A
(q)
y ε`(y, t). Thus, one must have

ε`(y, qtt) = ε`(qy, t). (40)
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Substituting from (39), one finds that if R ≡ qt, then we
also have

A(q)y ε`(y, t) = ε`−1(y, t) (41)

A
(q)

y ε`(y, t) = ε`+1(y, t). (42)

The expectation value of the quasi-position operator is to
be computed using the definition of the scalar product [7],

〈a, b〉y0 ≡

∫ ∞y0
0y0

a(y) b(y)

y
D(q)y (43)

≡ (q − 1)
∞∑

k=−∞

a(qky0) b(q
ky0). (44)

Here y0 serves as the origin of this hierarchical lattice, and
could be chosen equal to unity.
Defining 〈ε`(y, t), y ε`(y, t)〉y0 ≡ Q`(t), we have

Q`(t) = (q − 1)y0

∞∑
k=−∞

qke− q
k−`
t t. (45)

We see that the choice of the exponential form for the
state functions is dictated by the requirement that they
decay sufficiently fast for the infinite sum to converge at
both ends. The meaning of Q`(t) is the probability, at time
t, for the particle to be still found within some level ≤ `.
Notice that Q`+1(t) = Q`(q

−1
t t) or Q`(t) = TQ`+1(t). By

(45) we have

Q`+1 = (q − 1)y0

∞∑
k=−∞

qke− q
k−1−`
t t. (46)

Upon redefining the dummy index to be k′ = k − 1, this
gives

Q`+1(t) = q Q`(t). (47)

Thus, clearly, Q`(t) = q
`Q0(t) and the ε`(y, t) span a rep-

resentation of the algebra generated by the ∂
(q)
y , ∂

(q)

y and
Y.
Now we would like to show that the kinetics imply

that a probability distribution initially localized within
an interval q` of the origin will spread in time in such a
way that the uncertainty in the position becomes precisely
as large as the whole phase space available at that energy.
This means that the probability distribution is essentially
uniform over the available phase space at any given time.
The absolute value of the uncertainty in the simulta-

neous determination of the “momentum” and “position”
operators can be found as usual from the canonical com-
mutation relation. In our case, from (19, 26) we have

|〈∆Y∆Pq〉| ≥ |〈[Y,Pq]〉| (48)

= |〈iA(q)y 〉| (49)

= |〈−(q − 1)YPq + i〉|. (50)

This tells us that the product of the uncertainty in the
value of the position and the momentum operators is larger

than the expectation value of their product in absolute
value. Heuristically, one may say that, if Y ∼ vt1/ζ where v
is some effective diffusivity, then the uncertainty
|〈∆Y∆Pq〉| > |vt1/ζpq|, where pq is the average momen-
tum for this Y eigenstate. Thus, the uncertainty in the
position is as large, and increases with time in the same
way, as the interval over which the particle or the phase
point has travelled within the time t, i.e., it is equally
likely to be found anywhere within the phase space vol-
ume it is energetically allowed to explore.
More precisely, the expectation value of [Y,Pq], taken

with respect to the solutions of the Schrödinger equation,
normalized by their scalar product, yields

〈[Y,Pq]〉 = i〈[(q − 1)Y∂(q)y + 1]〉 (51)

= i
[
(q − 1)

qζψ − 1

q − 1
+ 1
]
= iqχ. (52)

With qζ = qt, this yields

|〈∆Y∆Pq〉| ≥ q
χ = qψt . (53)

On the other hand, taking the expectation value of the
canonical commutator between the states |`〉 and using
(24, 25), and (41, 42) gives us 〈ε`, ε`−1〉, which may be
interpreted as a transition probability between the states
|`− 1〉 and |`〉. This is again consistent with the fact that
uncertainty is a function of the leakage of the phase point
to larger and larger regions of the phase space, as time
goes by.

4 Discussion and connection with q-statistics

In this paper we have pointed out that on a lattice with
equal spacing on the logarithmic scale, a natural choice for
the position (“quasi-position”) operator, together with a
momentum operator that respects the asymmetry of the
y-space, yields a kinetics that can be understood in terms
of diffusion on an underlying ultrametric space, if one also
identifies the canonical commutator with the time trans-
lation (here dilation) operator, as happens [7] on an or-
dinary periodic lattice. The motion to which this non-
conventional kinetics corresponds is irreversible, with an
explicit violation of time reversal symmetry resulting from
the spreading with time of a probability distribution over
a larger and larger volume of the phase space [6]. It might
be noted that our Schrödinger equation (22, 27) involves,
on the RHS, only the first derivative with respect to po-
sition, in accordance with the fact that diffusion on the
hierarchical lattice corresponds to simply a drift with re-
spect to the quasi-position. This makes the Schrödinger
equation resemble the Fokker-Planck equation rather than
the diffusion equation.
In statistical physics, hierarchical lattices have arisen

recently in the anomalous relaxation of spin glasses
[16,17], transport in random media [18] and fully devel-
oped turbulent media [13] as realizations of ultrametric
spaces [20]. They consist of a hierarchy of nested inter-
vals (see Fig. 1), and one may associate a geometrical
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progression of spatial (and/or temporal) scales with the
different levels of the hierarchy. Diffusion on ultrametric
spaces have been thoroughly studied (see [13,14,16–20]
and references therein) by other methods, including the
renormalization group.
We would like to mention that Dimakis and Tzanakis

[21] have also recently given an alternative description
of the kinetics of open systems, built upon the assump-
tion that observables are now defined on a manifold with
non-commutative geometry. In this way, they recover the
non-conventional calculus obeyed by stochastic differen-
tiation (Itô’s calculus), without making any uncontrolled
approximations with respect to the microscopic Hamilto-
nian dynamics of the system. The relationship between
our approaches, however, will be the subject of a different
study.
Finally, we would like to make a connection with recent

work on random sets and q-distributions. It has been re-
marked by Arık et al. [22] that the basic number [n]q with
q = 1−1/M < 1 is the average number of distinct elements
in a set which is contructed in n steps by making random
draws from a source set with infinitely many elements of
which there are M distinct kinds. In our case, q > 1,
which is complementary to that considered by Arık et al.
The spreading of the distribution in the phase space of our
system extends at each step by (1−1/q)qm = (q−1)qm−1,
so that the total volume explored in n steps is precisely
1 + (q − 1)

∑n
1 q

m−1 = qn.
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